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Summary. K/Na ratios have been determined in the 
leaves of salt-treated plants of 14 disomic substitution 
lines in which each of the D-genome chromosomes 
replaces the homoeologous A- or B-genome chro- 
mosome in the tetraploid wheat variety Langdon 
(AABB genome). Aneuploid lines of hexaploid bread 
wheat (cv Chinese Spring) having a reduced or an 
enhanced complement of chromosome 4D have also 
been examined. These investigations show that the 
gene(s) determining K/Na  ratios in the leaves of wheat 
plants grown in the presence of salt is located on the 
long arm of chromosome 4D. 
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Introduction 

Soil salinity, alkalinity (sodicity) and related problems 
such as waterlogging are major limitations to the 
productivity of much irrigated land and ones which are 
very expensive to correct by agricultural engineering 
projects. There is thus much interest in breeding crop 
plants with enhanced tolerance to such unfavourable 
edaphic conditions (Epstein et al. 1980; Kingsbury and 
Epstein 1984; Downton 1984; Rana 1985). While toler- 
ance to salinity, alkalinity and associated problems in 
field conditions is certainly complex and influenced by 
a number of physiological, morphological and onto- 
genetic characters, salt tolerance in glycophytes, and 
especially in members of the Poaceae, is mainly as- 
sociated with the ability to limit the accumulation of 
Na and CI and with the maintenance of high K/Na  
ratios in the shoots (Greenway and Munns 1980; 
Gorham et al. 1985). 

Hexaploid bread wheat (Triticum aestivum L.) con- 
tains three genomes, designated A, B and D, which 
originated from wild wheatgrasses of the genera Triti- 
cum and Aegilops (Feldman and Sears 1981). The D 
genome of wheat, derived from the diploid grass A egilops 
squarrosa L. (syn. Triticum tauschii (Coss.) Schnal.), 
carries a gene (or genes) which determines the K/Na 
ratio in the shoots of wheat plants grown in saline hydro- 
ponic culture (Wyn Jones et al. 1984; Shah et al. 1987). 
When grown in hydroponic culture solutions containing 
100mol m -3 NaC1, Aegilops squarrosa (D genome) 
maintains high leaf K/Na ratios and has a lower total 
salt load compared with tetraploid wheats (T. turgidum, 
AABB genome). Many common bread wheats and 
synthetic, AABBDD-genome hexaploid wheats (in 
which the D genome ofAegi lops  squarrosa is combined 
with the A and B genomes of a tetraploid wheat) also 
display the high K/Na  discrimination character. The 
A-genome species Triticum monocoecum L. (sensu lato) 
also had a high K/Na ratio but the total monovalent 
cation content was considerably higher than in the 
other wheats and wheatgrasses (Wyn Jones et al. 1984). 
The poor K/Na discrimination shown by the tetraploid 
wheats was also exhibited by S genome Aegilops species 
(A. speltoides, A. searsii) which may be related to the 
ancestors of the B genome. 

A high K/Na ratio combined with low leaf salt 
contents is characteristic of salt-tolerant members of the 
grass tribe Triticeae (Gorham et al. 1984a, 1985, 1986a, 
b). There is some evidence that a high K/Na  ratio, 
particularly in the youngest leaf, might be associated 
with salt tolerance in bread wheat cultivars both in the 
field and in hydroponic studies (Joshi etal. 1979; 
Rashid 1986). A positive correlation of yield of bread 
wheats with leaf K contents under saline conditions, 
and a negative correlation with Na contents, has been 
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reported from field studies by Singh and Rana  (1985). 
It has also been reported that durum wheats (AABB 
genome) having low leaf  K / N a  ratios are less tolerant  
of  salt and alkal ini ty than hexaploid  bread wheats with 
the AABBDD genome (Francois  et al. 1986; Joshi et al. 
1982; Rana 1985, 1986; Rana et al. 1980). 

In order  to exploit  this character  in breeding pro-  
grammes to enhance the salt tolerance of  te traploid and 
hexaploid wheats it is desirable to identify the chro- 
mosome which carries the K / N a  discr iminat ion char- 
acter. Several genes which affect characters such as 
plant  height, resistance to hessian fly, the baking 
quali ty of  the flour and cold resistance are also located 
on chromosomes of  the D genome within hexaploid  
wheat. A number  of  such genes have been mapped ,  in 
some cases to the long or short  arm of  one chromosome 
(Ainsworth et al. 1984; Gale  et al. 1975, 1983; Gill  et al. 
1987; Law and Jenkins 1970). We repor t  here on 
experiments designed to de termine  which arm of  which 
D-genome chromosome carries the gene(s) control l ing 
the shoot K / N a  selectivity character.  

Materials and methods 

Disomic D-genome substitution lines in the tetraploid wheat 
variety Langdon were produced in Fargo, North Dakota by 
crossing Langdon with hexaploid wheat (cv Chinese Spring) 
lines developd by Sears (1966) which were nullisomic for 
particular A- or B-genome chromosomes and tetrasomic for 
the homoeologous D-genome chromosomes. Appropriate 
progeny were selfed and 28 chromosome plants selected. 
These were backcrossed with Langdon several times to remove 
the Chinese Spring A- and B-genome chromosomes and the 
progeny selfed and screened for the appropriate substitution 
lines. Details of the production, morphology and cytogenetics 
of these substitution lines have been reported elsewhere 
(Joppa 1973, 1987; Joppa and McNeal 1972; Joppa and Williams 
1977, 1983; Joppa et al. 1979). Aneuploid Chinese Spring lines 
came from stocks held at the Plant Breeding Institute, Cam- 
bridge, UK. Synthetic hexaploid wheat was obtained by 
crossing Langdon with Aegilops squarrosa (Hollenhorst and 
Joppa 1983; Joppa and Williams 1982; Joppa et al. 1980). 

In the first experiment seeds of the disomic D-genome 
substitution lines in Langdon, together with seeds of Langdon, 
A. squarrosa RL5003 and the synthetic hexaploid derived 
from them, were soaked for 24 h in slowly flowing tap water. 
The seeds were germinated on capillary matting attached with 
'Copydex '1 adhesive to the underside of 25 mm thick ex- 
panded polystyrene sheets in which holes (12 mm in diameter) 
were made with a cork borer to allow the shoots to emerge. 
The top surface of the expanded polystyrene was covered with 
black polythene sheeting (with holes for the shoots) to prevent 
evaporation and contact between leaves and the salt solution. 
Each 25 dm 3 container supported 24 seedlings in modified 
'Phostrogen '1 nutrient solution (Gorham etal. 1984b). Six 

1 Mention of a proprietary product does not constitute a 
guarantee or warranty of the product by the US Department 
of Agriculture and does not imply its approval to the exclusion 
of other products that may also be suitable 

replicate plants of each substitution line were grown without 
salt and six in the presence of 150mol m -~ NaCI plus 7.5 
tool m -~ CaCI~, the salt concentration being increased by 25 
tool m -3 d -a, starting when the plants were 2 weeks old. The 
plants were grown in a greenhouse at a minimum temperature 
of 15 ~ with natural daylight supplemented by 400 W Son-T 
sodium vapour lamps to give a photoperiod of 16 h. The 
second experiment, using the Chinese Spring aneuploid lines, 
was conducted in a similar manner to the first. 

Mature leaf samples were harvested after 3 weeks at the 
final salinity level, i.e. when the plants were about 6 weeks old, 
and placed in plastic syringe barrels with a 1.5 ml poly- 
propylene centrifuge tube placed over the end. The plunger of 
the syringe and the microcentrifuge tube prevented changes in 
the water content of the sample during sap extraction. The 
samples were frozen and thawed before being centrifuged at 
5,000 g for 5 min to extract the sap into the centrifuge tube, a 
small hole being made just below the rim of the micro- 
centrifuge tube to allow air to escape. Extracted plant sap was 
treated with 9 parts of 25% propan-2-ol and centrifuged at 
9,000 g for 1 min to remove the precipitated proteins. The 
supernatant was diluted prior to analysis with 10% propan-2- 
ol containing 20 mol m -3 RuBr (internal standards). Inorganic 
monovalent cations and inorganic anions were determined in 
the leaf saps using a Dionex12010i ion chromatograph 
coupled to a Pye 4700 autoinjector and a Pye DP 88 inte- 
grator. Samples of diluted sap (75 mm ~) were introduced via 
the injection valve of the Dionex 2010i which was actuated by 
the pneumatic controls of the autoinjector. Anions were 
analyzed on an HPIC-AS4A column eluted with 2 mol m -3 
Na2CO~ plus 0.7 molm -3 NaHCO3 in 2% propan-2-ol. Mono- 
valent cations were separated on an HPIC-CS3 column eluted 
with a mixture of 30 mol m -3 HCI, 1 tool m -3 2,3-diamino- 
propionic acid monohydrochloride and 0.5 mol m -3 ZnC12. 
The appropriate guard columns and suppressors were used, 
and detection was by conductivity. 

Results 

To locate the chromosome carrying the K / N a  discrimi- 
nat ion gene(s) we first examined the effect o f  growth in 
150 tool m -3 NaC1 + 7.5 mol  m -~ CaC12 on the mono-  
valent cation contents o f  leaves o f  plants  from a series 
of disomic substi tution lines in which each of  the 7 
pairs of  D-genome chromosomes  from the hexaploid  
wheat  variety Chinese Spring was substi tuted for the 
homoeologous A- or B-genome chromosomes  in the 
tetraploid wheat  variety 'Langdon ' .  This exper iment  
(Table 1) clearly indicated that the presence o f  chro- 
mosome 4D greatly enhanced  the K / N a  selectivity of  
both the 4 D / 4 A  and 4D/4B substi tution lines. The 
higher K / N a  ratios in these two lines were the result of  
both lower Na and higher K concentrations.  Total  
monovalent  cation ( K + N a )  and chloride contents of  
these leaves were similar  to those in leaves of  the other  
substitution lines and in the leaves o f  Langdon.  Results 
for A egilops squarrosa, Langdon  and a synthetic hexa- 
ploid wheat  grown in the same condit ions as the 
substituion lines are also shown in Table 1 and confirm 
the previous observat ions on the effect of  the whole D 
genome in hexaploid wheat  (Wyn Jones et al. 1984; 
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Table 1. Monovalent cation concentrations (mol m -~) in sap from leaves of Aegilops squarrosa RL 5003, Triticum turgidum cv 
Langdon, the synthetic hexaploid derived from them and the disomic D-genome substitution lines in Langdon grown in the pres- 
ence or absence of 150 mol m -3 NaCI plus 7.5 mol m -~ CaC12. values for the first three are means of four replicates while values for 
the substitution lines are means of six replicates, in all cases -+ standard errors 

Species and variety Sodium Potassium K/Na ratio K+ Na 

0 tool m 3 150 mol m -3 0 mol m -3 150 molm -3 150 molm -3 150 mol m -3 
NaC1 NaCI NaC1 NaC1 NaC1 NaC1 

Aegilops squarrosa RL 5003 3_+ 1 195-t-43 216_+ 10 220_+ 6 2 . 2 0 _ + 0 . 4 6  349+29 
Triticum turgidum Langdon 3_+ 1 282-+28 228+ 12 125_+ 9 0 . 4 5 _ + 0 . 0 6  408_+22 
Triticum aestivum L/RL 5003 1 4-0 76_+43 250_+ 10 2 3 2 _ + 4 1  6.95__+2.61 308_+ 18 

Triticum turgidum Langdon 
disomic substitution lines 

ID/IA 2+0  242___23 259-+11 136-+10  0 . 6 0 + _ 0 . 0 9  376+_20 
2D/2A 3-+0 240+22 227_+ 8 145+_28 0.58-+0.10 393+36 
3D/3A 3-+0 301+29 217_+ 13 129_+ 8 0 . 4 7 _ + 0 . 0 6  430_+28 
4D/4A 3_+ 1 126_+42 210_+ 13 2 0 4 _ + 2 0  2.77+0.65 330-t-25 
5D/5A 3.+_+ 1 313_+35 237_+ 13 144_+ 7 0 . 4 7 _ + 0 . 0 6  457-+37 
6D/6A 2-+0 290-I-37 2314- 5 165_+ 16 0 . 6 2 _ + 0 . 0 9  456+__44 
7D/7A 2_+1 304+21 226+11 137-+20  0.48-+0.06 442-+33 

ID/1B 2-+1 250-+14 241_+ 7 135_+32 0 . 4 7 _ + 0 . 0 8  351_+14 
2D/2B 3-+1 438_+57 227_+ 5 137+_ 7 0 . 3 8 _ + 0 . 0 3  559_+77 
3D/3B 3_+0 321_+18 209_+ 5 124_+ 7 0 . 4 0 _ + 0 . 0 4  445__+19 
4D/4B 4+2 98-+17 241+14 281-+13 3.43-+0.64 381-+22 
5D/5B 2-+0 298+14 238_+ 5 t53_+12  0 . 5 3 _ + 0 . 0 5  434+_13 
6D/6B 3_+1 308_+38 215+ 7 113_+ 6 0 . 4 1 _ + 0 . 0 6  400_+32 
7D/7B 2_+0 279_+ 3 209_+ 13 158_+26 0 . 5 7 _ + 0 . 1 0  461_+30 

Table 2. Monovalent cation concentrations (mol m -s) in sap 
from leaves of Triticurn aestivum cv Chinese Spring and vari- 
ous aneuploid lines derived from Chinese Spring grown in the 
presence of 125 mol m -3 NaCI plus 6.25 mol m -3 CaC12. Val- 
ues are the means of at least five replicates -I- standard errors 

Chinese Spring Sodium Potas- K/Na K + Na 
line sium ratio 

Euploid 85+ 16 223_+ 6 3.6_+0.6 329+25 

Ditelosomic 4D 261 +26 71_+ 3 0.6+0.3 332_+26 
short 

Ditelosomic 4 D 103_+25 232-+ 19 4.0_+ 1.3 335+31 
long 

Tetrasomic 4D 78_+ 12 232_+ 16 3.5_+0.6 301 -+ 12 

Nullisomic 4B, 95-+ 17 206-+ 12 3.4_+0.6 333-+35 
tetrasomic 4A 

Nullisomic 4B, 61_+11  231_+12 5.5_+1.3 292_+90 
tetrasomic 4D 

Nullisomic 4D, 274__+31 124-+38 0.5_+0.1 408_+54 
tetrasomic 4A 

Shah etal .  1987). These data also show that the 
enhanced K / N a  discrimination character is not simply 

a ploidy effect (Joshi et al. 1982; Singh and Rana 1985). 
Further analysis revealed that the K / N a  discrimination 
character was not apparent  in root extracts (data not 

shown), i.e. it is the flux of  Na and K between the roots 

and the shoots which is controlled. 

Expression of  the K / N a  discrimination character 

was further examined in a series of  aneuploid lines 

derived from the hexaploid wheat variety Chinese 
Spring (Table 2). Low K / N a  ratios were found in 

leaves from the line in which the long arm of the 4D 

chromosome was absent (ditelosomic 4D short) and in 
leaves from the line in which the 4D chromosome was 

totally absent (nullisomic 4D, tetrasomic 4A), thus con- 

firming the conclusions of  the first experiment. Since 
high K / N a  discrimination was found in the line ditelo- 

somic for the long arm of  chromosome 4D, but not in 

the line ditelosomic for the short arm of  4D, it may be 

concluded that the gene(s) is located on the long arm of  
chromosome 4D. The lowest Na concentrations were 

found in leaves of  the two lines containing an extra pair 
of  4D chromosomes (tetrasomic 4D and nullisomic 4B, 

tetrasomic 4D) suggesting that the effect may be en- 
hanced by the presence of  extra copies of  the gene(s). 

In both experiments there was, in comparison with 
the effects on K / N a  ratios, little effect o f  chromosome 
4D on total monovalent  cation or anion concentrations 

in leaf saps. There was, however, some indication that 
the presence of  chromosome 4D resulted in higher 

concentrations of  free Ca and Mg in the leaves. 

Discussion 

In a previous paper we reported that a synthetic 
hexaploid wheat containing the A and B genomes of  
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Fig. 1 a, b. Analysis of monovalent cations in sap from leaves 
of wheat grown at 150mol m -3 NaCI (+7.5 mol m -3 CaC12). 
a The tetraploid wheat variety Langdon. b A 4D/4A disomic 
substitution line in Langdon. Rubidium bromide was added to 
the extracts to provide internal standards for cation and anion 
analysis 

ported the discovery of  a gene (Ncl, ncl) which con- 
trolled chloride accumulat ion in the shoots of  soybean.  
The recessive ncl gene al lowed much more chloride to 
reach the shoot than the dominant ,  chlor ide excluding 
gene. The Capsicum annum scabrous diminutive mutant  
of  pepper  (Benzioni and Tal 1978; Tal 1984; Tal and 
Benzioni 1977) is ra ther  similar in its effects to the 
K / N a  discriminat ion character  described here in that  
the mutant  allows in much more Na than the wild- type 
and there is an accompanying loss of  K. It is much 
easier in the case of  such a mutan t  to demonst ra te  that 
a single gene is responsible for the effect than it is when 
only aneuploid lines are available.  Inter- and intra- 
varietal differences in K / N a  discr iminat ion l inked to 
the 4D chromosome o f  wheat  are currently being 
investigated. 
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